This article was downloaded by: On: 23 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713455674

SYNTHESIS AND CHARACTERIZATION OF W=W DOUBLY-BONDED DIMERS $[\eta^5-RC_5H_4W(CO)(\mu-SPh)]_2$ AND $[\eta^5-RC_5H_4W(\mu-Se)(\mu-SPh)]_2$ (R=MeO₂C, EtO₂C). CRYSTAL AND MOLECULAR STRUCTURE OF *TRANS/SYN*- $[\eta^5-EtO_2CC_5H_4W(\mu-SPh)]_2$

Li-Cheng Song^a; Ji-Quan Wang^a; Qing^{*}Mei Hu^a; Xiao⁻Ying Huang^b ^a Department of Chemistry, Nankai University, Tianjin, China ^b State Key Laboratory of Structural Chemistry, Fuzhou, Fujian, China

To cite this Article Song, Li-Cheng , Wang, Ji-Quan , Hu, Qing-Mei and Huang, Xiao-Ying(1999) 'SYNTHESIS AND CHARACTERIZATION OF W=W DOUBLY-BONDED DIMERS $[\eta^5-RC_5H_4W(CO)(\mu-SPh)]_2$ AND $[\eta^5-RC_5H_4W(\mu-Se)(\mu-SPh)]_2$ (R=MeO₂C, EtO₂C). CRYSTAL AND MOLECULAR STRUCTURE OF *TRANS/SYN*- $[\eta^5-EtO_2CC_5H_4W^4(\mu-SPh)]_2$ ', Journal of Coordination Chemistry, 46: 3, 245 – 255

To link to this Article: DOI: 10.1080/00958979908048469 URL: http://dx.doi.org/10.1080/00958979908048469

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

J. Coord. Chem., 1999, Vol. 46, pp. 245-255 Reprints available directly from the publisher Photocopying permitted by license only

SYNTHESIS AND CHARACTERIZATION OF W=W DOUBLY-BONDED DIMERS $[\eta^5-RC_5H_4W(CO)(\mu-SPh)]_2$ AND $[\eta^5-RC_5H_4W(\mu-Se)(\mu-SPh)]_2$ (R=MeO₂C, EtO₂C). CRYSTAL AND MOLECULAR STRUCTURE OF *TRANS/SYN-* $[\eta^5-EtO_2CC_5H_4W(\mu-Se)(\mu-SPh)]_2$

LI-CHENG SONG^{a,*}, JI-QUAN WANG^a, QING-MEI HU^a and XIAO-YING HUANG^b

^aDepartment of Chemistry, Nankai University, Tianjin, 300071, China; ^bState Key Laboratory of Structural Chemistry, Fuzhou, Fujian, 350002, China

(Received 18 September 1997; In final form 27 November 1997)

The reaction of triply-bonded dimers $[\eta^5-RC_5H_4(CO)_2W]_2$ with diphenyldisulfide affords doubly-bridged and doubly-bonded dimers $trans/anti-[\eta^5-RC_5H_4W(CO)(\mu-SPh)]_2$ (1a, $R = MeO_2C$; 2a, $R = EtO_2C$) and $trans/syn-[\eta^5-RC_5H_4W(CO)(\mu-SPh)]_2$ (1b, $R = MeO_2C$; 2b, $R = EtO_2C$). Further reaction of a mixture of the trans/anti and trans/syn isomers with elemental selenium leads to quadruply-bridged and doubly-bonded dimers, $trans/anti-[\eta^5-RC_5H_4W(\mu-Se)(\mu-SPh)]_2$ (3a, $R = MeO_2C$; 4a, $R = EtO_2C$) and $trans/syn-[\eta^5-RC_5H_4W(\mu-Se)(\mu-SPh)]_2$ (3b, $R = MeO_2C$; 4b, $R = EtO_2C$). All the above bridged W = W doubly-bonded dimers have been characterized by analysis, IR, ¹H NMR and MS spectroscopies, as well as for 4b by X-ray crystallography.

Keywords: Tungsten multiple bond; diphenyldisulfide; selenium; synthesis; crystal structure

INTRODUCTION

The group 6 metal-metal doubly-bonded dimers $[\eta^5-RC_5H_4M(CO)(\mu-SR')]_2$ (M = Cr, Mo, W; $\eta^5-RC_5H_4$ = parent and substituted cyclopentadienyls) are of great interest and potentially useful in synthesizing group 6 metalcontaining organometallic complexes.¹⁻⁴ However, although the synthesis,

^{*} Corresponding author.

structure and reactivities of the molybdenum dimers have been welldocumented, those of the tungsten analogues are little explored and only one such tungsten dimer has been reported in the literature.⁵ In this paper we describe the synthesis of four doubly-bridged and doubly-bonded tungsten dimers, *trans/anti-*[η^5 -RC₅H₄W(CO)(μ -SPh)]₂ (1a, R = MeO₂C; 2a, R = EtO₂C) and *trans/syn-*[η^5 -RC₅H₄W(CO)(μ -SPh)]₂ (1b, R = MeO₂C; 2b, R = EtO₂C) and the reaction of 1a-b or 2a-b with elemental selenium to afford four quadruply-bridged and doubly-bonded tungsten dimers, *trans/anti-*[η^5 -RC₅H₄W(μ -Se)(μ -SPh)]₂ (3a, R = MeO₂C; 4a, R = EtO₂C) and *trans/syn-*[η^5 -RC₅H₄W(μ -Se)(μ -SPh)]₂ (3b, R = MeO₂C; 4b, R = EtO₂C), as well as the molecular structure of 4b determined by X-ray diffraction methods.

EXPERIMENTAL

All reactions were carried out under a highly pre-purified nitrogen atmosphere using vacuum-line techniques. Toluene was distilled from sodiumbenzophenone ketyl under nitrogen. Preparative TLC was carried out on glass plates $(26 \times 19 \text{ cm})$ coated with silica gel G $(10-40 \mu\text{m})$. Gray selenium powder was of commercial origin and used as received; $[\eta^5 \cdot \text{RC}_5\text{H}_4(\text{CO})_2\text{W}]_2$ $(\text{R} = \text{MeO}_2\text{C}, \text{EtO}_2\text{C})^6$ and Ph_2S_2^7 were prepared according to literature methods. IR spectra were recorded on Nicolet FT-5DX and Bio-Rad FTS-40 infrared spectrophotometers. ¹H NMR spectra were recorded on a Jeol FX 90Q NMR spectrometer. C/H analyses and MS determinations were performed by a 240 C analyzer and HP 5988A spectrometer, respectively. Melting points were determined on a Yanaco MP-500 micro-melting point apparatus.

Trans/anti- $[\eta^5$ -MeO₂CC₅H₄W(CO)(μ -SPh)]₂ (1a) and Trans/syn- $[\eta^5$ -MeO₂CC₅H₄W(CO)(μ -SPh)]₂ (1b)

A 100 cm³ two-necked flask fitted with a magnetic stir-bar, a rubber septum, and a reflux condenser topped with a nitrogen inlet tube was charged with 0.150 g (0.207 mmol) of $[\eta^5$ -MeO₂CC₅H₄(CO)₂W]₂, 0.045 g (0.206 mmol) of Ph₂S₂ and 15 cm³ of toluene. The mixture was refluxed for 3 h. Solvent was removed and the residue was subjected to column chromatography using CH₂Cl₂ as eluent. The first green band gave 0.069 g (38%) of **1a**, the following brown-purple band gave 0.050 g (27%) of **1b**; **1a**: m.p. 213-215°C; anal. calcd. for C₂₈H₂₄O₆S₂W₂(%): C, 37.85; H, 2.72; found: C, 37.50; H, 2.89; IR (KBr disc): $\nu_{C=0}$ 1860(vs); $\nu_{C=0}$ 1713(vs) cm⁻¹; ¹H NMR (CDCl₃, δ): 3.60 (s, 6H, 2CH₃), 5.44 (m, 2H of 2C₅H₄ rings), 5.76 (m, 4H of 2C₅H₄ rings), 5.96 (m, 2H of 2C₅H₄ rings), 7.20–7.52 (m, 10H, 2C₆H₅) ppm; **1b**: m.p. 202–203°C; *anal.* calcd. for C₂₈H₂₄O₆S₂W₂(%): C, 37.85; H, 2.72; found: C, 37.86; H, 2.77; IR (KBr disc): $\nu_{C=0}$ 1852(vs), 1918(s); $\nu_{C=0}$ 1721(s) cm⁻¹; ¹H NMR (CDCl₃, δ): 3.52 (s, 3H, CH₃), 3.76 (s, 3H, CH₃), 5.50 (t, 2H, (H³, H⁴)), 5.78 (t, 2H, (H², H⁵)), 5.96 (t, 2H, (H³, H⁴)), 6.08 (t, 2H, (H², H⁵)), 7.08–7.48 (m, 10H, 2C₆H₅) ppm; MS (EI), *m/z* (relative intensity); 523[(MeO₂CC₅H₄)W₂S⁺, 1.1], 307(MeO₂CC₅H₄W⁺, 0.8), 186 (Ph₂S⁺, 3.6), 184 (W⁺, 1.9), 154 (Ph₂⁺, 13.0), 109 (PhS⁺, 10.4), 92 (C₅H₄(CO)⁺, 55.0), 77 (Ph⁺, 100).

Trans/anti-[η^5 -EtO₂CC₅H₄W(CO)(μ -SPh)]₂ (2a) and Trans/syn-[η^5 -EtO₂CC₅H₄W(CO)(μ -SPh)]₂ (2b)

A similar reaction of 0.150 g (0.199 mmol) of $[\eta^5$ -EtO₂CC₅H₄(CO)₂W]₂, and 0.044 g (0.202 mmol) of Ph_2S_2 in 15 cm³ of toluene afforded 0.079 g (43%) of 2a and 0.064 g (35%) of 2b; 2a: m.p. 203-205°C; anal. calcd. for C₃₀H₂₈O₆S₂W₂(%): C, 39.32; H, 3.08; found: C, 39.12; H, 3.06; IR (KBr disc): $\nu_{C=0}$ 1868(vs); $\nu_{C=0}$ 1713(vs) cm⁻¹; ¹H NMR (CDCl₃, δ): 1.12 (s, 6H, 2CH₃), 4.06 (q, 4H, 2CH₂), 5.36 (m, 2H of 2C₅H₄ rings), 5.72 (m, 4H of $2C_5H_4$ rings), 5.88 (m, 2H of $2C_5H_4$ rings), 7.00-7.52 (m, 10H, $2C_6H_5$) ppm; MS (EI), m/z (relative intensity): 888 ((M-CO)⁺, 1.0), 860 ((M-2CO)⁺, 2.7) 665 $((C_5H_4)_2W_2(CO)S(SPh)^+, 1.1), 650 (C_5H_4W_2(SPh)_2^+, 1.4), 637$ $((C_5H_4)_2W_2S(SPh)^+, 1.9), 586 (W_2(SPh)_2^+, 3.1), 560 ((C_5H_4)_2W_2S_2^+, 1.4), 528$ $((C_5H_4)_2W_2S^+, 3.0), 509 (W_2S(SPh)^+, 1.4), 496 ((C_5H_4)_2W_2^+, 0.8), 432$ $(W_2S_2^+, 0.3), 368 (W_2^+, 0.6), 109 (PhS^+, 3.3), 92 (C_5H_4(CO)^+, 14.6), 77 (Ph^+, 14.6), 77 (Ph^+, 14.6))$ 16.5); 2b: m.p. 179-181°C; anal. calcd. for C₃₀H₂₈O₆S₂W₂(%): C, 39.32; H, 3.08; found: C, 39.35; H, 2.87; IR (KBr disc): $\nu_{C=0}$ 1836(vs), 1918(vs); $\nu_{C=0}$ 1713(s) cm⁻¹; ¹H NMR (CDCl₃, δ): 0.84 (t, 3H, CH₃, J=7.2 Hz), 1.16 (t, 3H, CH₃, J = 7.2 Hz), 3.88 (q, 2H, CH₂, J = 7.2 Hz), 4.14 (q, 2H, CH_2 , J = 7.2 Hz), 5.40 (t, 2H, (H³, H⁴)), 5.68 (t, 2H, (H², H⁵)), 5.86 (t, 2H, (H^3, H^4)), 5.96 (t, 2H, (H^2, H^5)), 7.04–7.40 (m, 10H, 2C₆H₅) ppm.

Trans/anti- $[\eta^5$ -MeO₂CC₅H₄W(μ -Se)(μ -SPh)]₂ (3a) and Trans/syn- $[\eta^5$ -MeO₂CC₅H₄W(μ -Se)(μ -SPh)]₂ (3b)

A flask as described above was charged with 0.405 g (0.456 mmol) of $[\eta^5 - MeO_2CC_5H_4W(CO)(\mu$ -SPh)]₂, 0.144 g (1.824 mmol) of selenium powder and 30 cm³ of toluene. The mixture was refluxed for 2 h. Solvent was

removed and the residue was subjected to preparative TLC separation using CH₂Cl₂ as eluent to give two purple bands, from which 0.074 g (16%) of **3a** and 0.028 g (6%) of **3b** were obtained; **3a**: m.p. 262–263°C; anal. calcd. for C₂₆H₂₄O₄S₂Se₂W₂(%): C, 31.54; H, 2.44; found: C, 31.67; H, 2.34; IR (CsI disc): $\nu_{C=0}$ 1711(vs) cm⁻¹; ¹H NMR (CDCl₃, δ): 3.78 (s, 6H, 2CH₃), 6.36–7.16 (4m, 18H, 2C₅H₄+2C₆H₅); MS (EI), *m/z* (relative intensity): 640 ((C₅H₄)₂W₂S₂Se⁺, 1.8), 608 ((C₅H₄)₂W₂Se⁺, 1.9), 186 (Ph₂S⁺, 5.4), 157 (PhSe⁺, 11.8), 154 (Ph₂⁺, 4.7), 109 (PhS⁺, 26.8), 92 (C₅H₄(CO)⁺, 50.8), 77 (Ph⁺, 100); **3b**: m.p. 169°C (dec.); anal. calcd. for C₂₆H₂₄O₄S₂Se₂W₂(%): C, 31.54; H, 2.44; found: C, 31.54; H, 2.19; IR (CsI disc): $\nu_{C=0}$ 1715(vs) cm⁻¹; ¹H NMR (CDCl₃, δ): 3.77 (s, 6H, 2CH₃), 6.56–7.00 (2m, 18H, 2C₅H₄ + 2C₆H₅) ppm; MS (EI), *m/z* (relative intensity): 186 (Ph₂S⁺, 2.4), 184 (W⁺, 1.5), 157 (PhSe⁺, 1.9), 154 (Ph₂⁺, 4.1), 109 (PhS⁺, 27.8), 92 ((C₅H₄(CO)⁺, 11.2), 77 (Ph⁺, 20.8).

Trans/anti- $[\eta^5$ -EtO₂CC₅H₄W(μ -Se)(μ -SPh)]₂ (4a) and Trans/syn- $[\eta^5$ -EtO₂CC₅H₄W(μ -Se)(μ -SPh)]₂ (4b)

A flask as described above was charged with 0.400 g (0.436 mmol) of $[\eta^{5}$ -EtO₂CC₅H₄W(CO)(μ -SPh)]₂, 0.138 g (1.748 mmol) of selenium powder and 30 cm³ of toluene. Similar work-up was followed to give 0.131 g (30%) of **4a** and 0.069 g (16%) of **4b**; **4a**: m.p. 260–261°C; anal. calcd. for C₂₈H₂₈O₄S₂Se₂W₂(%): C, 33.03; H, 2.77; found: C, 33.02; H, 2.62; IR (CsI disc): $\nu_{C=0}$ 1705(vs) cm⁻¹; ¹H NMR (CDCl₃, δ): 1.20(t, 6H, 2CH₃, J = 7.2 Hz), 4.26 (q, 4H, 2CH₂, J = 7.2 Hz), 6.28–7.16 (4m, 18H, 2C₅H₄ + 2C₆H₅) ppm; **4b**: m.p. 212°C (dec.); anal. calcd. for C₂₈H₂₈O₄S₂Se₂W₂(%): C, 33.03; H, 2.77; found: C, 32.62; H, 2.70; IR (CsI disc): $\nu_{C=0}$ 1706(vs) cm⁻¹; ¹H NMR (CDCl₃, δ): 1.22 (t, 6H, 2CH₃, J = 7.2 Hz), 4.27 (q, 4H, 2CH₂, J = 7.2 Hz), 6.56–7.08 (2m, 18H, 2C₅H₄ + 2C₆H₅) ppm; MS (EI), *m/z* (relative intensity): 831 ((M–Se–PhS)⁺, 1.1), 656 ((C₅H₄)₂W₂S₂Se⁺, 4.5), 642 ((EtO₂CC₅H₄)₂W⁺₂, 3.7), 640 ((C₅H₄)₂W₂S₂Se⁺, 4.3), 186 (Ph₂S⁺, 5.3), 157 (PhSe⁺, 2.9), 154 (Ph⁺, 4.0), 109 (PhS⁺, 28.3), (η⁵-C₅H₅W(CO)-(μ -SCHMe₂)), 92 (C₅H₄(CO)⁺, 42.9), 77 (Ph⁺, 46.4).

Single-Crystal Structural Determination of 4b

Suitable crystals of **4b** for an X-ray diffraction study were obtained by slow evaporation of a hexane/CH₂Cl₂ solution. A single crystal with dimensions $0.60 \times 0.12 \times 0.08$ mm was mounted on a glass fibre with epoxy resin. Data collection was performed on an Enraf-Nonius CAD4 diffractometer

equipped with a graphite monochromator. Lorentz and polarization corrections and an empirical absorption correction were applied to the data. Details of crystal parameters, data collection and structure refinement are summarized in Table IV.

The structure was solved by direct methods (MITHRIL). Final refinement was carried out using full-matrix least-squares methods with anisotropic thermal parameters for non-hydrogen atoms. All calculations were performed on a Micro-VAX II computer using the TEXSAN program package.

RESULTS AND DISCUSSION

As described in the experimental section, in order to synthesize the doublybonded tungsten dimers *trans/anti* and *trans/syn-*[η^5 -RC₅H₄W(CO) (μ -SPh)]₂ (R = MeO₂C, EtO₂C) (1**a**-**b**) and (2**a**-**b**), the reaction of an equivalent of tungsten triply-bonded dimers [η^5 -RC₅H₄(CO)₂W]₂ with PhSSPh was carried out in toluene at reflux. After a reaction time of 5 h, TLC showed that the dinuclear tungsten starting materials had completely disappeared and two spots in green and brown-purple colours could be seen. The reaction mixture was subjected to column chromatography to afford dimers 1**a**-**b** and 2**a**-**b** in 65% and 78% overall yields, respectively (Scheme 1).

Products 1a and 1b, 2a and 2b are *trans/anti* and *trans/syn* isomers, which can be viewed formally as derived from the exchange of PhS ligands in PhSSPh with CO ligands of the triply-bonded starting materials

 $[\eta^5 - \text{RC}_5 H_4(\text{CO})_2 W]_2$. Although for compounds of the type $[\eta^5 - \eta^5 - \eta^5]_2$. $RC_5H_4W(CO)(\mu$ -SPh)]₂ five isomers, namely trans/anti, trans/syn, cis/anti and two cis/syn isomers are possible (based on trans/cis arrangement of RC_5H_4 and carbonyl ligands and *anti/syn* orientation of phenyl groups with respect to the planar W_2S_2 ring), the reaction mentioned above produced only trans/anti and trans/syn isomers, and the other three isomers (note that for the two cis/syn isomers, one has two Ph groups and two RC₅H₄ ligands on the same side of the planar W_2S_2 ring, and the other on the opposite side of the W_2S_2 ring), which all have RC_5H_4 or carbonyl ligands in *cis* positions, were not obtained. This is most likely due to the cis isomers having very strong internal steric repulsions, and thus being highly unstable, as had been confirmed by X-ray diffraction analyses of the Mo analogues trans/ anti and trans/syn-[RC₅H₄Mo(CO)(μ -SPh)]₂(R = MeCO).⁸ It is worth noting that the first related tungsten dimer $[\eta^5-C_5H_5W(CO)(\mu-SCHMe_2)]_2$ had been prepared in 14.6% yield by Shaver⁵ through thermal reaction of η^5 - $C_5H_5W(CO)_2(PPh_3)SCHMe_2$ or $[\eta^5-C_5H_5W(CO)_2(\mu-SCHMe_2)]_2$, which was obtained only as the trans/anti isomer; other isomers were not detected by ¹H NMR spectroscopy. However, compared to Shaver's method, our procedure gave both *trans/anti* and *trans/syn* isomers **1a-b** and **2a-b**, and yields are much higher than that obtained by Shaver.⁵

The complexes 1a-b and 2a-b were characterized by elemental analysis, IR, ¹H NMR and MS spectroscopies. For the *trans/anti* isomers, due to their centrosymmetric geometries, the ¹H NMR spectra show one singlet at 3.60 ppm for methyl groups in 1a, one triplet at 1.12 ppm and one quartet at 4.60 ppm for ethyl groups in 2a, and three multiplets between 5.36 and 5.96 ppm for the protons of cyclopentadienyl rings in both 1a and 2a. However, for the trans/syn isomers having non-centrosymmetric geometries, the ¹H NMR spectra exhibit two singlets at 3.52 and 3.76 ppm for methyl groups in 1b, two triplets at 0.84 and 1.16 ppm and two quartets at 3.88 and 4.14 ppm for ethyl groups in 2b, and four triplets between 5.40 and 6.08 ppm assigned to the protons of cyclopentadienyl rings in both 1b and 2b. IR spectra of the trans/anti and trans/syn isomers all show one ester carbonyl band at $1705-1721 \text{ cm}^{-1}$, but one terminal carbonyl absorption band at about 1864 cm^{-1} for *trans/anti* isomers **1a** and **2a** and two terminal carbonyl bands at $1836-1918 \text{ cm}^{-1}$ for *trans/syn* isomers **1b** and **2b**, this also due to their different geometries.

In order to further explore the reactivity of 1a-b and 2a-b, we carried out reactions with selenium in toluene. After the reaction mixture was refluxed for 2 h, we found that the tungsten materials disappeared and the reaction mixture turned purple. After removal of the solvent, the residue was subjected to TLC to give quadruply-bridged dimers 3a-b and 4a-b in 22% and 46% overall yields, respectively (Scheme 2).

Products 3a-b and 4a-b can be regarded formally as resulting from the substitution of CO ligands of 1a-b and 2a-b by the selenido ligands generated from selenium powder. These products are also *trans/anti* and *trans/syn* isomers in terms of the *trans/cis* arrangement of RC₅H₄ and selenido ligands and *anti/syn* orientation of phenyl groups with respect to the W₂S₂ ring. Elemental analyses, IR, ¹H NMR and MS spectroscopies for these isomers are in accordance with their structures. For example, the IR spectra of 3a-b and 4a-b all display one ester carbonyl band at $1705-1715 \text{ cm}^{-1}$, without showing any absorption signals for a terminal CO ligand. Since *trans/anti* isomers 3a and 3b are centrosymmetric and *trans/syn* isomers 4a and 4b each has a symmetric plane, the ¹H NMR spectra of 3a and 3b all show one singlet at 3.78 and 3.77 ppm for the methyl groups, whereas those of 4a and 4b all exhibit one triplet at 1.20 and 1.22 ppm and one quartet at 4.26 and 4.27 ppm for the ethyl groups.

We have unambiguously confirmed the molecular structure of **4b** by X-ray diffraction techniques. The structure is shown in Figure 1. Tables I– III list the positional parameters, selected bond lengths (Å) and selected bond angles (°). As seen from Figure 1, two η^5 -EtO₂CC₅H₄W moieties are metal-metal bonded and quadruply-bridged by *trans* benzenethiolato and selenido ligands, which form an unprecedented W₂Se₂S₂ cluster skeleton and the two phenyl groups on sulfur atoms adopt a *syn* orientation. Such a structure with a mixed and quadruple Se₂S₂ bridge on a W = W double bond is similar to those with a quadruple S₄ or Se₄ bridge on a Mo = Mo

FIGURE 1 Structure of 4b showing the atom numbering scheme.

double bond, for example $trans/anti-[\eta^5-MeC_5H_4Mo(\mu-S)(\mu-SMe)]_2$, $trans/anti-[\eta^{5}-Me_{5}C_{5}Mo(\mu-S)(\mu-SMe)]_{2},^{10}$ $trans/syn-(\eta^{5}-PrC_{5}H_{4})_{2}Mo_{2}(\mu-S)_{2}$ $(\mu-S^{1}Bu)_{2}$,¹¹ and *trans/syn-* $(\eta^{5}-C_{5}H_{5})_{2}Mo_{2}(\mu-Se)_{2}(\mu-SePh)_{2}$.¹² The W₂S₂ and W₂Se₂ rings are all planar and the two planes are mutually perpendicular (90.35°). The four bridgehead atoms S_2Se_2 also constitute a plane, which basically parallels the two substituted cyclopentadienyl rings (the dihedral angle between the two rings = 2.87°) and bisects the W-W vector. The nonbonding distances between bridgehead atoms are 2.865(3) (Se(2)-S(1)), 2.848(3) (Se(2)-S(2)), 3.076(3) (Se(1)-S(1)) and 3.089(3) (Se(1)-S(2))Å. These distances are less than the sum of the van der Waals radii of sulfur and selenium atoms, which indicates some weak interactions between the bridgehead atoms. Compound 4b contains two W atoms each in oxidation state + IV and thus is a d^2-d^2 dimer with $\sigma^2\delta^2$ electronic configuration.^{13,14} This would suggest a double bond between the tungsten atoms. The W-W double bond length of 2.625(3) Å is reasonable and near the W-W double bond length of 2.602(5) Å in trans/anti- $[\eta^5-C_5H_5W(CO)(\mu-SCHMe_2)]_2$.⁵ In addition, the four W-S bond lengths of 4b are almost the same (2.468(3)-2.488(2) Å), slightly longer than those in *trans/anti*- $[\eta^5-C_5H_5W (CO)(\mu$ -SCHMe₂)]₂ (2.411(3) and 2.412(4) Å).⁵

Atom	x/a	y/b	z/c	B(eq)
W(1)	0.09928(3)	0.76519(3)	-0.06102(3)	1.98(1)
W(2)	0.37273(3)	0.86643(3)	0.11586(3)	1.90(1)
Se(1)	0.2281(1)	0.65945(7)	0.04077(7)	2.30(2)
Se(2)	0.2433(1)	0.97486(7)	0.01439(8)	2.64(3)
S(1)	0.1401(2)	0.8785(2)	0.1449(2)	2.31(6)
S(2)	0.3330(2)	0.7800(2)	-0.0912(2)	2.19(6)
O(1)	0.0353(8)	0.8700(6)	0.3091(5)	3.6(2)
O(2)	0.0399(9)	0.7156(7)	-0.3860(6)	4.6(3)
O(3)	0.5096(8)	1.2013(5)	0.3377(6)	3.8(2)
O(4)	0.4516(8)	1.1093(6)	0.4378(6)	4.0(2)
C(11)	-0.059(1)	0.7252(8)	-0.2489(8)	2.8(3)
C(12)	-0.126(1)	0.7807(9)	-0.1768(8)	3.1(3)
C(13)	-0.170(1)	0.706(1)	-0.1303(8)	3.8(3)
C(14)	-0.127(1)	0.604(1)	-0.1745(8)	3.6(3)
C(15)	-0.059(1)	0.6173(8)	-0.2466(8)	3.5(3)
C(16)	-0.011(1)	0.7678(8)	-0.3217(8)	3.2(3)
C(17)	-0.006(1)	0.9200(9)	-0.3813(9)	3.6(3)
C(18)	-0.142(1)	0.875(1)	-0.4953(9)	4.0(3)
C(21)	0.538(1)	1.0170(8)	0.2957(8)	2.7(3)
C(22)	0.536(1)	0.9109(8)	0.3069(7)	2.8(3)
C(23)	0.597(1)	0.8483(8)	0.2331(8)	2.9(3)
C(24)	0.640(1)	0.9154(8)	0.1822(8)	3.2(3)
C(25)	0.604(1)	1.0175(8)	0.2160(8)	3.0(3)
C(26)	0.493(1)	1.1131(8)	0.3646(8)	3.2(3)
C(27)	0.478(1)	1.3029(8)	0.407(1)	3.8(3)
C(28)	0.613(1)	1.386(1)	0.521(1)	4.9(4)
C(31)	0.092(1)	0.7926(7)	0.2148(7)	2.4(2)
C(32)	-0.033(1)	0.6969(8)	0.1573(8)	3.5(3)
C(33)	0.074(1)	0.6420(9)	0.2198(9)	3.8(3)
C(34)	0.010(1)	0.6857(9)	0.3372(9)	3.6(3)
C(35)	0.138(1)	0.7820(9)	0.3948(8)	3.4(3)
C(36)	0.178(1)	0.8360(8)	0.3350(8)	3.0(3)
C(41)	0.373(1)	0.6456(7)	-0.1470(8)	2.6(3)
C(42)	0.305(1)	0.5805(8)	-0.2688(8)	3.3(3)
C(43)	0.340(1)	0.4810(9)	-0.321(1)	4.2(4)
C(44)	0.446(1)	0.4493(9)	-0.252(1)	4.5(4)
C(45)	0.518(1)	0.515(1)	-0.132(1)	4.3(4)
C(46)	0.481(1)	0.6123(8)	-0.0793(9)	3.2(3)

TABLE I Positional parameters of non-hydrogen atoms and equivalent isotropic thermal parameters for ${\bf 4b}$

TABLE II Selected bond lengths (Å) for the complex 4b

W(1)-W(2)	2.625(3)	S(1)-C(31)	1.811(8)
W(1)-Se(1)	2.464(2)	S(2) - C(41)	1.790(9)
W(1) - S(2)	2.479(2)	O(1) - C(16)	1.34(1)
W(1) - S(1)	2.481(3)	O(1) - C(17)	1.44(1)
W(1)-Se(2)	2.490(3)	O(2) - C(16)	1.20(1)
W(2)-Se(1)	2.463(3)	O(3) - C(26)	1.32(1)
W(2) - S(2)	2.468(3)	O(3) - C(27)	1.46(1)
W(2) - S(1)	2.488(2)	O(4) - C(26)	1.21(1)
W(2)-Se(2)	2.493(2)		

Se(1)-W(1)-S(2)	77.36(6)	S(2)-W(2)-S(1)	115.48(9)
Se(1) - W(1) - S(1)	76.93(7)	S(2) - W(2) - Se(2)	70.08(7)
Se(1)-W(1)-Se(2)	116.05(7)	S(2) - W(2) - W(1)	58.15(7)
Se(1)-W(1)-W(2)	57.79(6)	S(1)-W(2)-Se(2)	70.24(6)
S(2)-W(1)-S(1)	115.3(1)	S(1) - W(2) - W(1)	57.97(6)
S(2)-W(1)-Se(2)	69.95(8)	Se(2)-W(2)-W(1)	58.16(6)
S(2) - W(1) - W(2)	57.75(6)	W(2)-Se(1)-W(1)	64.39(6)
S(1)-W(1)-Se(2)	70.4(1)	W(1) - Se(2) - W(2)	63.57(7)
S(1) - W(1) - W(2)	58.23(8)	C(31)-S(1)-W(1)	115.9(3)
Se(2) - W(1) - W(2)	58.26(8)	C(31)-S(1)-W(2)	114.3(3)
Se(1)-W(2)-S(2)	77.6(1)	W(1)-S(1)-W(2)	63.79(8)
Se(1) - W(2) - S(1)	76.82(8)	C(41)-S(2)-W(2)	117.9(3)
Se(1)-W(2)-Se(2)	115.99(7)	C(41)-S(2)-W(1)	116.2(3)
Se(1)-W(2)-W(1)	57.83(8)	W(2) - S(2) - W(1)	64.10(8)

TABLE III Selected bond angles (°) for the complex 4b

TABLE IV Details of crystal parameters, data collection and structure refinement for 4b

Molecular formula	$C_{28}H_{28}O_4S_7Se_2W_2$		
Molecular weight	1018.27		
Space group	triclinic, Pl		
a (Å)	9.904(3)		
$b(\dot{A})$	12.917(8)		
c (Å)	13.561(7)		
α (°)	111.38(6)		
β (°)	110.47(4)		
γ (°)	98.74(6)		
$V(\dot{A}^3)$	1434(2)		
Z	2		
Radiation used, $\lambda(\dot{A})$	ΜοΚα (0.71073 Å)		
$Dcalc (g cm^{-3})$	2.36		
$\mu (\mathrm{cm}^{-1})$	108.77		
Temperature (K)	296		
Scan mode	$\omega - 2\theta$		
Measured reflections	5344		
Observed reflections $I > 3\sigma(I)$	4157		
$\theta_{\rm max}$ (°)	25		
R	0.034		
R _w	0.045		
$\Delta \rho_{\rm max} \ ({\rm e} {\rm \AA}^{-3})$	1.33		

Supplemental Material

Tables of fractional atomic coordinates, thermal parameters, interatomic distances, and observed and calculated structure factors are available on request from the authors.

Acknowledgments

We are grateful to the National Natural Science Foundation of China, the Laboratory of Organometallic Chemistry at the Shanghai Institute of Organic Chemistry and the State Key Laboratory of Structural Chemistry for financial support of this project.

References

- [1] P. Li and M.D. Curtis, Inorg. Chem., 29, 1242 (1990).
- [2] P. Li and M.D. Curtis, J. Am. Chem. Soc., 111, 8279 (1989).
- [3] F. Robin, R. Rumin, F.Y. Pétillon, K. Foley and K.W. Muir, J. Organomet. Chem., 418, C33 (1991).
- [4] L.-C. Song, J.-Q. Wang, Q.-M. Hu and X.-Y. Huang, Polyhedron, 15, 4295 (1996).
- [5] A. Shaver, B.S. Lum, P. Bird, E. Livingstone and M. Schweitzer, Inorg. Chem., 29, 1832 (1990).
- [6] L.-C. Song, J.-Q. Wang, W.-J. Zhao, Q.-M. Hu, Y.-Q. Fang and S.-J. Zhang, J. Organomet. Chem., 453, 105 (1993).
- [7] E.E. Reid, "Organic Chemistry of Bivalent Sulfur" (Chemical Publishing Co., New York, 1958), Vol. 1, p. 118.
- [8] L.-C. Song, J.-Q. Wang, Q.-M. Hu, R.-J. Wang and T.C.W. Mak, Inorg. Chim. Acta, 256, 129 (1997).
- [9] M.R. Dubois, M.C. Van Derveer, D.L. Dubois, R.C. Haltiwanger and W.K. Miller, J. Am. Chem. Soc., 102, 7456 (1980).
- [10] H. Brunner, W. Meier, J. Wachter, P. Weber, M.L. Ziegler, J.H. Enemark and C.G. Young, J. Organomet. Chem., 309, 313 (1986).
- [11] M. Chen, J.A. Bandy and K. Prout, Jiegou Huaxue, 5, 18 (1986).
- [12] H. Rakoczy, M. Schollenberger, B. Nuber and M.L. Ziegler, J. Organomet. Chem., 467, 217 (1994).
- [13] N.G. Connelly and L.F. Dahl, J. Am. Chem. Soc., 92, 7470 (1970).
- [14] B.E. Bursten and R.H. Cayton, Inorg. Chem., 28, 2846 (1989).